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Intrusion detection systems (IDSs) analyze information about the activities performed in a computer system or
network, looking for evidence of malicious behavior. Attacks against a system manifest themselves in terms of
events. These events can be of a different nature and level of granularity. For example, they may be represented
by network packets, operating system calls, audit records produced by the operating system auditing facilities, or
log messages produced by applications. The goal of intrusion detection systems is to analyze one or more event
streams and identify manifestations of attacks.

The intrusion detection community has developed a number of different tools that perform intrusion detection
in particular domains (e.g., hosts or networks), in specific environments (e.g., Windows NT or Solaris), and at
different levels of abstraction (e.g., kernel-level tools and alert correlation systems). These tools suffer from two
main limitations: they are developed ad hoc for certain types of domains and/or environments, and they are difficult
to configure, extend, and control remotely.

In the specific case of signature-based intrusion detection systems the sensors are equipped with a number of
attack models that are matched against a stream of incoming events. The attack models are described using an ad
hoc, domain-specific language (e.g., N-code, which is the language used by the Network Flight Recorder intrusion
detection system). Therefore, performing intrusion detection in a new environment requires the development of
both a new system and a new attack modeling language. As intrusion detection is applied to new and previously
unforeseen domains, this approach results in increased development effort.

Today’s network are not only heterogeneous, but also dynamic. Therefore, intrusion detection systems need
to support mechanisms to dynamically change their configuration as the security state of the protected system
evolves. Most existing intrusion detection systems are initialized with a set of signatures at startup time. Updating
the signature set requires stopping the IDS, adding new signatures, and then restarting execution. Some of these
systems provide a way to enable/disable some of the available signatures, but few systems allow for the dynamic
inclusion of new signatures at execution time. In addition, the ad hoc nature of existing IDSs does not allow one to
dynamically configure a running sensor so that a new event stream can be used as input for the security analysis.

Another limitation of existing IDSs is the relatively static configuration of responses. Normally it is possible
to choose only from a specific subset of possible responses. In addition, to our knowledge, none of the systems
allows one to associate a response with intermediate steps of an attack. This is a severe limitation, especially in
the case of distributed attacks carried out over a long time span.

Finally, the configuration of existing IDSs is mostly performed manually and at a very low level. This task
is particularly error-prone, especially if the intrusion detection systems are deployed across a very heterogeneous
environment and with very different configurations.

This talk describes a framework for the development of intrusion detection systems, called STAT, that over-
comes these limitations. The STAT framework includes a domain-independent attack modeling language and a
domain-independent event processing analysis engine. The framework can be extended in a well-defined way to
match new domains, new event sources, and new responses. The resulting set of applications is a software family
whose members share a number of features, including dynamic reconfigurability and a fine-grained control over
a wide range of characteristics. The main advantage of this approach is the limited development effort and the
increased reuse that result from using an object-oriented framework and a component-based approach.

STAT is both unique and novel. First, STAT is the only known framework-based approach to the development
of intrusion detection systems. Second, even though the use of frameworks to develop families of systems is a
well-known approach, the STAT framework is novel in the fact that the framework extension process includes, as
a by-product, the generation of an attack modeling language closely tailored to the target environment. This talk
focuses primarily on the STAT framework.

Paper presented at the RTO IST Symposium on “Adaptive Defence in Unclassified Networks”, 
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Intrusion DetectionIntrusion Detection

•• Analysis of the actions performed by users and applications Analysis of the actions performed by users and applications 
looking for evidence of malicious activitieslooking for evidence of malicious activities

•• Two techniquesTwo techniques
–– Anomaly detectionAnomaly detection (statistics, profiles, specs) ((statistics, profiles, specs) (IDES, RST, ADAMIDES, RST, ADAM))

•• Detects previously unknown attacksDetects previously unknown attacks
•• Difficult to configure (train), generates many false alarmsDifficult to configure (train), generates many false alarms

–– Misuse detectionMisuse detection (signature analysis) ((signature analysis) (NFR, Emerald, Snort, STATNFR, Emerald, Snort, STAT))
•• Generates few false alarmsGenerates few false alarms
•• Detects only known attacks, needs continuous updatingDetects only known attacks, needs continuous updating

•• Different domainsDifferent domains
–– HostHost--basedbased
–– ApplicationApplication--basedbased
–– NetworkNetwork--based based 
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Undesirable FormatUndesirable Format
for an Intrusion Reportfor an Intrusion Report
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Intrusion DetectionIntrusion Detection

•• Intrusion detection is traditionally based on analysis of lowIntrusion detection is traditionally based on analysis of low--
level events: network packets, system calls, audit recordslevel events: network packets, system calls, audit records

•• Intrusion detection has evolved in several waysIntrusion detection has evolved in several ways
–– New analysis techniquesNew analysis techniques
–– Multiple event sources, possibly introducing distributionMultiple event sources, possibly introducing distribution
–– Abstraction: fusion/correlation of highAbstraction: fusion/correlation of high--level events, e.g., alertslevel events, e.g., alerts

•• Monitor and surveillance functionality always/still based on Monitor and surveillance functionality always/still based on 
sensorssensors
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Intrusion Detection Intrusion Detection 
Sensor LimitationsSensor Limitations

•• Sensors are developed in an ad hoc fashion to match Sensors are developed in an ad hoc fashion to match 
specific environments/domains/event sourcesspecific environments/domains/event sources

•• Sensors are hard to configureSensors are hard to configure
•• Sensors are hard to controlSensors are hard to control
•• Sensors are hard to extendSensors are hard to extend
•• Configuration/control/extension is mostly executed staticallyConfiguration/control/extension is mostly executed statically
•• Configuration is mostly done manuallyConfiguration is mostly done manually
•• Identifying Identifying ““meaningfulmeaningful”” sensor configurations can be difficultsensor configurations can be difficult
•• Number of sensors that can be easily managed is smallNumber of sensors that can be easily managed is small
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Solution:Solution:
A Web of SensorsA Web of Sensors

•• Set of heterogeneous sensors that provide intrusion Set of heterogeneous sensors that provide intrusion 
detection functionality within a protected networkdetection functionality within a protected network
–– STAT FrameworkSTAT Framework
–– STATL and the STAT coreSTATL and the STAT core

•• Sensors controlled, coordinated, and configured by means of Sensors controlled, coordinated, and configured by means of 
a distributed infrastructurea distributed infrastructure
–– MetaSTATMetaSTAT

•• Explicit modeling of component dependencies and current Explicit modeling of component dependencies and current 
sensor configuration supports automated sensor configuration supports automated ““meaningfulmeaningful””
reconfigurationsreconfigurations
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A Web Of SensorsA Web Of Sensors
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OutlineOutline

•• STAT and STAT FrameworkSTAT and STAT Framework
•• STAT Extension ProcessSTAT Extension Process
•• MetaSTATMetaSTAT



STAT

KN-9

The STAT FrameworkThe STAT Framework

•• ObjectObject--Oriented framework for the development of intrusion Oriented framework for the development of intrusion 
detection sensorsdetection sensors

•• Based on the State Transition Analysis TechniqueBased on the State Transition Analysis Technique
•• Provides a domainProvides a domain--independent attack modeling language, independent attack modeling language, 

called STATLcalled STATL
•• Provides a Provides a ““corecore”” domaindomain--independent event processing independent event processing 

analysis engine that implements the STATL semanticsanalysis engine that implements the STATL semantics
•• Supports a wellSupports a well--defined extension process defined extension process 
•• Supports flexible and dynamic response mechanismsSupports flexible and dynamic response mechanisms
•• Provides a communication and control infrastructureProvides a communication and control infrastructure
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Set of IDS ApplicationsSet of IDS Applications
is a Software Familyis a Software Family

•• A number of STATA number of STAT--based sensors have been developed based sensors have been developed 
leveraging the frameworkleveraging the framework

•• The result is a The result is a ““software familysoftware family”” whose members share a whose members share a 
number of featuresnumber of features
–– Dynamic reconfigurationDynamic reconfiguration
–– FineFine--grained control (response, scenarios)grained control (response, scenarios)
–– Attack specification languageAttack specification language

•• Limited development effortLimited development effort
•• High level of reuseHigh level of reuse
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State Transition State Transition 
Analysis TechniqueAnalysis Technique

•• STAT models penetrations as a sequence of state transitionsSTAT models penetrations as a sequence of state transitions
•• Represents only key activities that lead from an initial safe Represents only key activities that lead from an initial safe 

state to a final compromised statestate to a final compromised state
–– Signature ActionsSignature Actions
–– State AssertionsState Assertions
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State Transition DiagramsState Transition Diagrams

Attacker Attacker 
illicitly gainsillicitly gains

more privilegesmore privileges

Attacker hasAttacker has
limited limited 

privilegesprivileges

state assertionsstate assertions

initialinitial
statestate

signature actionssignature actions
compromisedcompromised

statestate
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USTAT exampleUSTAT example
ftpftp--writewrite

•• ExploitExploit
–– use ftp to create .use ftp to create .rhostsrhosts file in worldfile in world--writable ftp home directorywritable ftp home directory
–– rlogin using bogus .rlogin using bogus .rhostsrhosts filefile

S0

create_file read_rhosts

S3S2

login

S1
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STATLSTATL

•• A STATL specification is the description of a complete attack A STATL specification is the description of a complete attack 
scenario (a signature) in terms of states and transitionsscenario (a signature) in terms of states and transitions

•• DomainDomain--independent languageindependent language
–– Extensions for Extensions for 

•• IP networksIP networks
•• Solaris BSMSolaris BSM
•• WinNT event logging facilityWinNT event logging facility
•• Apache event logsApache event logs
•• SyslogSyslog facilityfacility
•• IDMEF AlertsIDMEF Alerts

•• Parameterized descriptionsParameterized descriptions
–– Generic attacks customizable by installation or policyGeneric attacks customizable by installation or policy
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STATL Basic AbstractionsSTATL Basic Abstractions

•• ScenariosScenarios
–– StatesStates
–– Transitions (consuming, Transitions (consuming, nonconsumingnonconsuming, unwinding), unwinding)
–– Signature actionsSignature actions
–– AssertionsAssertions
–– Global environmentGlobal environment
–– Local environmentLocal environment
–– Code blocksCode blocks

•• EventsEvents
–– Defined as trees of generic events encapsulating domainDefined as trees of generic events encapsulating domain--specific specific 

opaque eventsopaque events

•• TimersTimers



STAT

KN-16

USTAT exampleUSTAT example
ftpftp--writewrite

•• ExploitExploit
–– use ftp to create .use ftp to create .rhostsrhosts file in worldfile in world--writable ftp home directorywritable ftp home directory
–– rlogin using bogus .rlogin using bogus .rhostsrhosts filefile

S0

create_file read_rhosts

S3S2

login

S1
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ftpftp--write in STATLwrite in STATL

use ustat;

scenario ftp_write
{

int user, pid, inode;
string objname;

initial state s0 { }

transition create_file (s0 -> s1) nonconsuming
{

[WRITE w] : (w.euid != 0) && (w.owner != w.ruid)
{

inode = w.inode;
objname = w.objname;

}
}

state s1 { }

transition login (s1 -> s2) nonconsuming
{

[EXECUTE e] : match_name(e.objname, "login")
{

user = e.ruid;
pid = e.pid;

}
}

state s2 { }

transition read_rhosts (s2 -> s3) consuming
{

[READ r] : (r.pid == pid) && (r.inode == inode)
}

state s3
{

{
string username = userid2name(user);
log("%d: by user %s using %s", user, username, objname);

}
}

}
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NetSTATNetSTAT exampleexample
UDPUDP--racerace

s1

ClientRequest

s3

s2

s5s4ServerReply

SpoofedReply1

SpoofedReply2
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UDPUDP--race in STATLrace in STATL
transition ClientRequest (S1 -> S2) nonconsuming
{

[IPDatagram d1 [UDPDatagram u1]]
<* ENDPOINT_PORTS a_c.interface, a_s.interface *> :
(d1.src == a_c) && (d1.dst == a_s) && (u1.dst == x.port)

{
request_ip_src = d1.src;
request_ip_dst = d1.dst;
request_udp_src = u1.src;
request_udp_dst = u1.dst;

}
}

transition ServerReply (S2 -> S4) consuming
{

[IPDatagram d2 [UDPDatagram u2]]
<* ENDPOINT_PORTS a_s.interface, a_c.interface *> :
(d2.src == request_ip_dst) &&
(d2.dst == request_ip_src) &&
(u2.src == request_udp_dst) &&
(u2.dst == request_udp_src)

}

action SpoofedReply
{

[Message m2 [IPDatagram d2 [UDPDatagram u2]]]
<* ENDPOINT_PORTS i_r, a_c.interface *>
<* CONSTRAINT ! exists_detached_path(m2.src, d2.src.interface) *> :

(d2.src == request_ip_dst) &&
(d2.dst == request_ip_src) &&
(u2.dst == request_udp_src) &&
(u2.src == request_udp_dst)

}

transition SpoofedReply1 (S2 -> S3) consuming { SpoofedReply }

transition SpoofedReply2 (S4 -> S5) consuming { SpoofedReply }
}

use netstat;
scenario UDP_race
{

Host server, racer;
Service x;
IPAddress a_s, a_c;
Interface i_r;

IPAddress request_ip_src, request_ip_dst;
Port request_udp_src, request_udp_dst;

<* CONSTRAINT
( server in Network.hosts) &&
(x in server.services) &&
(x.protocol == "UDP”) &&
(x.authentication == "IPaddress”) &&
(a_s in x.ipAddresses) &&
(a_c in x.trustedAddr) &&
(a_c.interface in ProtectedNetwork.interfaces) &&
(racer in Network.hosts) &&
(racer != server) &&
! (a_c in racer.ipAddresses) &&
i_r in racer.interfaces

*>

state S3 { { log("compromised"); } }

state S5 { { log("under attack"); } }
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STATL Execution ModelSTATL Execution Model

•• A STATL scenario has a runtime representation in terms ofA STATL scenario has a runtime representation in terms of
–– Prototype (global environment and STD definition)Prototype (global environment and STD definition)
–– Instances (local environment, occurrence of an attack)  Instances (local environment, occurrence of an attack)  

•• Event matching and assertions determine which enabled Event matching and assertions determine which enabled 
transitions fire transitions fire 

•• Scenario evolution determined by transition typeScenario evolution determined by transition type
–– NonconsumingNonconsuming: New instance in new state : New instance in new state and and current instance stays current instance stays 

in previous statein previous state
–– ConsumingConsuming: Current instance changes its state: Current instance changes its state
–– UnwindingUnwinding: Backtracking to ancestor instance, possibly removing a : Backtracking to ancestor instance, possibly removing a 

subtree of the instance treesubtree of the instance tree
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The STAT Core ModuleThe STAT Core Module

•• Implements STATL basic Implements STATL basic 
abstractionsabstractions
–– ScenarioScenario

•• StateState
•• Transitions (consuming, nonTransitions (consuming, non--

consuming, unwinding)consuming, unwinding)
•• Signature actionsSignature actions
•• AssertionsAssertions
•• Global environmentGlobal environment
•• Local environmentLocal environment
•• Code fragmentsCode fragments

–– EventsEvents
–– TimersTimers
–– Synthetic events

•• Defines general semanticsDefines general semantics
–– Event matchingEvent matching
–– Scenario processingScenario processing
–– UnwindingUnwinding

Synthetic events
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STAT Extension ProcessSTAT Extension Process

•• STATL language and the core analysis engine are both STATL language and the core analysis engine are both 
extended to deal with a specific domain (host, network, extended to deal with a specific domain (host, network, 
application), event stream, or platformapplication), event stream, or platform

•• Can be dynamically extended to build a STATCan be dynamically extended to build a STAT--based sensorbased sensor
–– Language extensions Language extensions 
–– Event providersEvent providers
–– Scenario Scenario pluginsplugins
–– Responses modulesResponses modules

•• Extensions contain data structures and code to operate on  Extensions contain data structures and code to operate on  
the data structuresthe data structures
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STAT Extension Process STAT Extension Process 
Uses a Common FormatUses a Common Format

•• A common extension format: A common extension format: 
–– Saves a considerable amount of development timeSaves a considerable amount of development time
–– Produces more reliable librariesProduces more reliable libraries
–– Allows for interchangeable event producers/consumersAllows for interchangeable event producers/consumers

•• Uses C++ class hierarchyUses C++ class hierarchy
–– Create, destroy, clone, dump, restore, type managementCreate, destroy, clone, dump, restore, type management

•• Subclass STAT framework C++ root classes:Subclass STAT framework C++ root classes:
–– STAT_EventSTAT_Event
–– STAT_TypeSTAT_Type
–– STAT_ProviderSTAT_Provider
–– STAT_ScenarioSTAT_Scenario
–– STAT_ResponseSTAT_Response
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Language ExtensionLanguage Extension

•• Set of events and types that characterize the entities of a Set of events and types that characterize the entities of a 
particular domainparticular domain

•• All event types defined as subclasses of STAT_Event All event types defined as subclasses of STAT_Event 
•• All other types defined as subclasses of STAT_TypeAll other types defined as subclasses of STAT_Type
•• Defined events and types can be used in writing STATL Defined events and types can be used in writing STATL 

scenarios for the specific domainscenarios for the specific domain

•• Compiled into dynamicallyCompiled into dynamically--linked libraries (.so or DLL files)linked libraries (.so or DLL files)
•• Loaded into the core whenever needed by a scenarioLoaded into the core whenever needed by a scenario
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Attack ScenariosAttack Scenarios

•• Written in STATL with the relevant language extensionsWritten in STATL with the relevant language extensions
•• Automatically translated into a subclass of the Automatically translated into a subclass of the 

STAT_Scenario classSTAT_Scenario class
•• Compiled into dynamicallyCompiled into dynamically--linked libraries, called scenario linked libraries, called scenario 

pluginsplugins
•• Loaded into the core  as neededLoaded into the core  as needed
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Event ProvidersEvent Providers

•• Collect events from the environment Collect events from the environment 
•• Create STAT events as defined in one or more language Create STAT events as defined in one or more language 

extensionsextensions
•• Insert the events in the event queue of the STAT coreInsert the events in the event queue of the STAT core
•• Created by Created by subclassingsubclassing the STAT_Provider classthe STAT_Provider class
•• MultiMulti--threaded runtime supports the processing of multiple threaded runtime supports the processing of multiple 

event streams event streams 
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Response ModulesResponse Modules

•• Contain libraries of actions that may be associated with the Contain libraries of actions that may be associated with the 
evolution of one or more scenariosevolution of one or more scenarios

•• Created by Created by subclassingsubclassing the STAT_Response classthe STAT_Response class
•• Compiled into dynamicallyCompiled into dynamically--linked libraries linked libraries 
•• Loaded into STAT core when neededLoaded into STAT core when needed
•• One or more actions can be associated with any state One or more actions can be associated with any state 

defined in a loaded scenario defined in a loaded scenario pluginplugin

•• Example actionsExample actions
–– write to filewrite to file
–– reset a TCP connectionreset a TCP connection
–– email to Network Security Officeremail to Network Security Officer
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STAT Framework Class STAT Framework Class 
HierarchyHierarchy

STAT_Object

STAT_ResponseSTAT_ScenarioSTAT_ProviderSTAT_Extension

STAT_Event STAT_Type

NetSniffer

RemoteBufferOverflow

UDPFlood PortScan NetResponse

PortUDP

IP TCP

IPAddress

Framework Classes

Extension Classes
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The Framework At WorkThe Framework At Work

•• Define a Language Extension, i.e., the events, types, and Define a Language Extension, i.e., the events, types, and 
predicates to be used in a specific domainpredicates to be used in a specific domain

•• Compile the extension into a Language Extension ModuleCompile the extension into a Language Extension Module
•• Develop an Event Provider that transforms external data into Develop an Event Provider that transforms external data into 

events as defined by one or more Language Extensionsevents as defined by one or more Language Extensions
•• Compile the Event Provider into a dynamically linkable moduleCompile the Event Provider into a dynamically linkable module
•• Develop STATL scenarios that use the events defined in one or Develop STATL scenarios that use the events defined in one or 

more Language Extensionsmore Language Extensions
•• Translate/compile the scenario into a Scenario Translate/compile the scenario into a Scenario PluginPlugin
•• If necessary, develop response libraries to be used with the If necessary, develop response libraries to be used with the 

scenarioscenario
•• Link everything together (shake well) and run your sensorLink everything together (shake well) and run your sensor
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Creating a SensorCreating a Sensor

Attack ScenariosAttack Scenarios
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A Family Of SensorsA Family Of Sensors

•• USTAT (HostUSTAT (Host--based, Solaris, BSM auditing) based, Solaris, BSM auditing) 
•• NetSTATNetSTAT (Network(Network--based, Linux/Solaris, network traffic)based, Linux/Solaris, network traffic)
•• WinSTATWinSTAT (Host(Host--based, Windows 2000, Security event logs)based, Windows 2000, Security event logs)
•• LinSTATLinSTAT (Host(Host--based, Linux platform, Snare auditing)based, Linux platform, Snare auditing)
•• WebSTATWebSTAT (Application(Application--based, UNIX, Apache logs)based, UNIX, Apache logs)
•• AlertSTATAlertSTAT ((CorrelatorCorrelator, UNIX, IDMEF alerts), UNIX, IDMEF alerts)
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A Family Of SensorsA Family Of Sensors

•• LogSTATLogSTAT (Host(Host--based, UNIX OS, based, UNIX OS, syslogsyslog files)files)
•• ftpSTATftpSTAT (Application(Application--based, extension of based, extension of LogSTATLogSTAT))
•• aodvSTATaodvSTAT (Network(Network--based, Linux, Wireless Adbased, Linux, Wireless Ad--Hoc routing Hoc routing 

protocol events)protocol events)
•• AgletSTATAgletSTAT (Application(Application--based, Linux, Aglets mobile code based, Linux, Aglets mobile code 

system)system)
•• SnortSTATSnortSTAT (Application(Application--based, UNIX, Snort based, UNIX, Snort pluginplugin))
•• SienaSTATSienaSTAT (WAN (WAN CorrelatorCorrelator, UNIX, SIENA events), UNIX, SIENA events)
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OK, You Can Develop OK, You Can Develop 
Your Own IDS, But...Your Own IDS, But...

•• What if one wants to change the configuration of a sensor at What if one wants to change the configuration of a sensor at 
run time, without having to stop the whole thing?run time, without having to stop the whole thing?

•• How can one be sure that all the pieces (extensions, How can one be sure that all the pieces (extensions, 
providers, scenarios) fit together?providers, scenarios) fit together?

•• What if one wants to control a multitude of sensors deployed What if one wants to control a multitude of sensors deployed 
throughout the network?throughout the network?

•• What if one wants to aggregate/fuse/correlate the alerts What if one wants to aggregate/fuse/correlate the alerts 
produced by the deployed sensors?produced by the deployed sensors?
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MetaSTATMetaSTAT

A communication and control infrastructure for STATA communication and control infrastructure for STAT--based based 
sensorssensors

•• CommSTATCommSTAT communication infrastructure allows for the communication infrastructure allows for the 
exchange of alerts and control commands over secure exchange of alerts and control commands over secure 
connectionsconnections

•• MetaSTATMetaSTAT Controller dispatches commands to the sensorsController dispatches commands to the sensors
•• The STAT Proxy mediates communicationThe STAT Proxy mediates communication

–– Performs local module management (installation/configuration)Performs local module management (installation/configuration)
–– Relays commands to sensors (loading/activation)Relays commands to sensors (loading/activation)
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MetaSTATMetaSTAT

•• MetaSTATMetaSTAT ConfiguratorConfigurator manages sensorsmanages sensors
–– Database of available modules and corresponding dependenciesDatabase of available modules and corresponding dependencies
–– Database of current sensor configurationsDatabase of current sensor configurations
–– Allows the security officer to submit reconfiguration requestsAllows the security officer to submit reconfiguration requests
–– Checks for the meaningfulness of reconfigurationChecks for the meaningfulness of reconfiguration

•• MetaSTATMetaSTAT Collector component aggregates sensor alerts in Collector component aggregates sensor alerts in 
a centralized database to support analysis and correlationa centralized database to support analysis and correlation
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MetaSTATMetaSTAT
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MetaSTATMetaSTAT:  Main View:  Main View
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MetaSTATMetaSTAT: Table View: Table View
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MetaSTATMetaSTAT:  Tree View:  Tree View
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Module DatabaseModule Database

•• Models and stores the information about Models and stores the information about 
–– The available The available modules modules (Language Extensions, Event Providers, (Language Extensions, Event Providers, 

Attack Scenarios, and Responses)Attack Scenarios, and Responses)
–– A number of A number of external componentsexternal components (e.g., a specific auditing facility)(e.g., a specific auditing facility)

•• Models and stores the dependencies between modules and Models and stores the dependencies between modules and 
componentscomponents
–– Activation dependencies: Activation dependencies: Module A needs module B in order to be Module A needs module B in order to be 

loaded and activatedloaded and activated
–– Functional dependenciesFunctional dependencies: Module A needs module B in order to : Module A needs module B in order to 

produce meaningful results or any results at allproduce meaningful results or any results at all
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Module ManagementModule Management

•• Each Module may be Each Module may be 
–– InstalledInstalled
–– LoadedLoaded
–– ActivatedActivated

•• A STAT sensor configuration is uniquely defined by a set of A STAT sensor configuration is uniquely defined by a set of 
installed/activated modules and available external installed/activated modules and available external 
componentscomponents

•• A configuration is A configuration is validvalid if all the activation dependencies are if all the activation dependencies are 
satisfiedsatisfied

•• A configuration is A configuration is meaningful meaningful if it is valid and all the if it is valid and all the 
functional dependencies are also satisfiedfunctional dependencies are also satisfied
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Module Database SchemaModule Database Schema
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Sensor DatabaseSensor Database

•• Models and stores information about the current Models and stores information about the current 
configuration of a Web of Sensorsconfiguration of a Web of Sensors
–– Installed modules (at each STAT Proxy site)Installed modules (at each STAT Proxy site)
–– Loaded/Activated modules (in each STAT Sensor)Loaded/Activated modules (in each STAT Sensor)
–– Available external components (at each host)Available external components (at each host)
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Sensor DatabaseSensor Database
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MetaSTATMetaSTAT ConfiguratorConfigurator

•• Intrusion Detection Administrator (IDA) requires highIntrusion Detection Administrator (IDA) requires high--level level 
reconfigurationreconfiguration

•• The The MetaSTATMetaSTAT ConfiguratorConfigurator
–– Determines the required sensor configuration by examining the Determines the required sensor configuration by examining the 

Module DatabaseModule Database
–– Determines which modules are already available using the Sensor Determines which modules are already available using the Sensor 

Database Database 
–– Determines the steps that are necessary to complete the Determines the steps that are necessary to complete the 

reconfigurationreconfiguration
•• The The MetaSTATMetaSTAT Controller sends the appropriate control Controller sends the appropriate control 

messagesmessages
•• STAT Proxies perform the installationSTAT Proxies perform the installation
•• STAT Sensors reconfigure accordinglySTAT Sensors reconfigure accordingly
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ExampleExample

•• Intrusion Detection Administrator (IDA) wants to deploy FTP Intrusion Detection Administrator (IDA) wants to deploy FTP 
monitoring scenariosmonitoring scenarios

•• The Module Database is searched for suitable modulesThe Module Database is searched for suitable modules
•• A subset is selectedA subset is selected
•• The Module Database is examined for possible activation The Module Database is examined for possible activation 

dependenciesdependencies
•• The Module Database is searched for possible functional The Module Database is searched for possible functional 

dependenciesdependencies
•• Results trigger a new series of queriesResults trigger a new series of queries
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Dependency GraphDependency Graph
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ExampleExample

•• ConfiguratorConfigurator determines the complete set of dependenciesdetermines the complete set of dependencies
•• ConfiguratorConfigurator compares required modules with compares required modules with 

installed/activated modules as stored in the Sensor installed/activated modules as stored in the Sensor 
DatabaseDatabase

•• ConfiguratorConfigurator compiles a compiles a deployment plandeployment plan
•• Plan passed to the ControllerPlan passed to the Controller
•• Controller ships messages to the ProxiesController ships messages to the Proxies
•• Proxies perform installations and forward loading/activation Proxies perform installations and forward loading/activation 

messages to the sensorsmessages to the sensors
•• Detection begins...Detection begins...
•• Possible custom responses are shipped/installed/activatedPossible custom responses are shipped/installed/activated
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HiHi--DRA  ArchitectureDRA  Architecture
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Advantages of the Advantages of the 
ApproachApproach

•• Fast development of intrusion detection sensor for different Fast development of intrusion detection sensor for different 
platforms/domainsplatforms/domains

•• Highly customizableHighly customizable
•• Dynamic reDynamic re--configurabilityconfigurability
•• Support for the management of a very large number of Support for the management of a very large number of 

sensorssensors
•• Separation of analysis mechanisms from domainSeparation of analysis mechanisms from domain--dependent dependent 

elements and response functionalityelements and response functionality
•• Modules can be reused across sensorsModules can be reused across sensors
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Advantages of the Advantages of the 
ApproachApproach

•• Multiple Language Extensions and Event Providers can be Multiple Language Extensions and Event Providers can be 
used within the same sensorused within the same sensor

•• Responses can be associated with intermediate steps in Responses can be associated with intermediate steps in 
attack scenariosattack scenarios

•• Support for alert collection and distributionSupport for alert collection and distribution
•• ThirdThird--party tools can be easily integrated through STAT party tools can be easily integrated through STAT 

ProxiesProxies
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